fbpx
מאי 9, 2020

קרן וריבית, ריבית נומינלית ומתואמת, קרן שווה וסילוק לפי שפיצר – כל מה שצריך לדעת

  • Finwiz
  • פוסטים
  • קרן וריבית, ריבית נומינלית ומתואמת, קרן שווה וסילוק לפי שפיצר – כל מה שצריך לדעת
שיתוף ב facebook
שיתוף ב twitter
שיתוף ב whatsapp
שיתוף ב email
שתפו!
שיתוף ב facebook
שיתוף ב twitter
שיתוף ב whatsapp
שיתוף ב email
שתפו!

להבין את כל החלקים הטכניים של הלוואת המשכנתה – החזר קרן שווה מול שפיצר, ריבית נומינלית מול מתואמת

כשתרכיבו את התמהיל שלכם, תצטרכו לקבל עוד החלטה נוספת עבור כל הלוואה- מה שיטת ההחזר של ההלוואה. יש שתי שיטות מקובלות: החזר שווה של הקרן (ובשמה הפופולרי: החזר קרן שווה) ותשלום חודשי זהה (ובשמה הפופולרי: החזר לפי לוח סילוקין שפיצר). המטרה של המאמר הזה להכיר את המונחים הבסיסיים של המשכנתה – ואז לדון לעומק בשיטות ההחזר. כלומר, אני אסקור את ההבדלים ביניהן, אדון ביתרונות ובחסרונות של כל שיטה, אפריך מיתוסים ואנסה לעזור לכם להבין איזו שיטת החזר מתאימה לכם.

הסברים טכניים – מה היא קרן, ריבית, ריבית נומינלית וריבית מתואמת.

לפני הכל, אנחנו צריכים לבסס שפה משותפת. נעזר בדוגמה שתלווה אותנו לכל אורך המאמר. ובכן, אנחנו מעוניינים להלוות מיליון שקל לטובת רכישת דירתנו. סיכמנו שהבנק יעניק את הכסף בהלוואה לעשרים שנה ובריבית שנתית נומינלית של 3.00%

כלומר, הקרן, שהיא הסכום שהבנק העניק לכם, עומדת על מיליון שקלים. הבנק הוא גוף עסקי שמטרתו להרוויח והרווח שלו מגיע מתשלומי הריבית. הריבית היא שנתית אבל מחושבת חודשית. כלומר כל חודש גובים ריבית חודשית מיתרת הקרן. בפועל, זה אומר שמחלקים את הריבית השנתית ב12 חודשים. בדוגמה הנדונה, הריבית הנומינלית החודשית היא 0.25% לחודש.

אם אנחנו מחייבים הריבית מדי חודש בחודשו בריבית הנומינלית החודשית מבלי להקטין את הקרן, נקבל את הריבית השנתית המתואמת. הריבית השנתית המתואמת היא זו שתופיע לכם באישורים העקרוניים.

כדי להבהיר זאת, נשתמש באישור העקרוני המצורף. הריבית השנתית הנומינלית בהלוואה הראשונה היא 2.85%. לכן, הריבית הנומינלית החודשית היא

2.85%/12 = 0.2375%.

ולכן, הריבית השנתית המתואמת היא הפעלה של הריבית הנומינלית החודשית על הקרן שתיים עשרה פעמים. כלומר, היא:

1.002375^12 = (1.002375)*( 1.002375)*( 1.002375)*…*( 1.002375) = 1.0289 = 2.89%

דוגמה מתוך אישור קרוני למשכנתה של ריבית נומינלית וריבית מתואמת

ואכן – שימו לב ש2.89% היא הריבית המתואמת (בעמודה השלישית משמאל)

איך הבנק מרוויח כסף

אוקי, נחזור לדוגמה העיקרית שלנו. הבנק הלווה לנו מיליון שקל, בריבית שנתית נומינלית של 3%. הריבית הנומינלית החודשית היא 0.25% כלומר אחרי חודש, החוב לבנק יהיה
1000000*(1.0025) = 1002500. כלומר, הבנק הרוויח החודש מההלוואה שהוא העניק לנו 2500 שקל. הריבית היא הרווח של הבנק מהמשכנתה. היא הסיבה שהבנק מעניק לכם משכנתא.

איך אנחנו מצמצמים את החוב לבנק

בהתבסס על הדוגמה העיקרית, נניח שההחזר החודשי שלנו הוא 4000 שקלים, אז מתוך ההחזר הזה, 2500 שקלים כאמור הלכו לכסות את תשלומי הריבית, והכסף שנותר – שהוא 1500 שקלים הולך לטובת הפחתת הקרן (החוב) לבנק. כלומר, לאחר התשלום הראשון, על סך 4000 שקלים, החוב לבנק יעמוד על 998500 שקלים.

אם נסתכל מה יקרה בחודש הבא, החוב יגדל בהתאם לריבית הנומינלית החודשית, ויעמוד על:

998500*1.0025=1000996.

שימו לב! החודש הזה הבנק הרוויח רק 2496.3 ש”ח – בקירוב 4 שקלים פחות מחודש קודם.

לכן, המטרה שלנו היא למזער את תשלומי הריבית ולמקסם את תשלומי הקרן. ככל שתשלומי הקרן יהיו גדולים יותר ביחס להחזר החודשי, כך ההלוואה תהיה זולה יותר.

בהתבסס על התיאור הזה, אפשר להסיק שתי מסקנות חשובות. המסקנה הראשונה היא שכבר מהחודש הראשון, הקרן מצטמצמת. החוב לבנק פוחת כבר מהתשלום הראשון. אם מספרים לכם שבהתחלה משלמים רק ריבית ואחר כך משלמים את הקרן – זה לא נכון. אילו היו משלמים רק ריבית, הקרן לא הייתה קטנה, ובחודש הבא היינו צריכים לשלם בדיוק את אותו סכום הריבית – ואז ההלוואה לא הייתה נפרעת לעולם.
המסקנה השניה היא שככל שהזמן עובר, החלק בהחזר החודשי שמוקצה לריבית הולך וקטן והחלק שמוקצה להחזר הקרן הולך וגדל. ככל שהזמן חולף רווחי הבנק הולכים ופוחתים.

איך נקבע ההחזר החודשי

אז איך קובעים שההחזר על מיליון שקל ל20 שנה הוא 4000 שקל? מי קובע את זה בכלל? במה הוא תלוי? ההחזר החודשי על ההלוואה תלוי ב ארבעה משתנים: הריבית, משך ההלוואה, סכום ההלוואה ושיטת החזר הקרן. יש שתי שיטות להחזר קרן:
השיטה הראשונה קובעת שכל חודש נקטין את הקרן בשיעור קבוע. זו הלוואת קרן שווה.
השיטה השנייה קובעת שכל חודש ההחזר שלנו יהיה קבוע (זו הלוואה בתשלום חודשי זהה – סילוק הלוואה לפי שיטת שפיצר). בפסקאות הקרובות אתאר אותן.

שיטה ראשונה להחזר הקרן – החזר קרן שווה

בשיטה זו הקרן תקטן בכל חודש באופן שווה. נחזור לדוגמה שלנו, אם לקחנו הלוואה של מיליון שקל לעשרים שנה, אז הקרן צריכה לקטון בכל אחד מ240 התשלומים באופן שווה (ולכן ההלוואה נקראת “קרן שווה”). כלומר התשלום החודשי על חשבון הקרן צריך לעמוד על (חלוקה של מיליון ש”ח ב240 תשלומים): 4166.7 שקלים בחודש. מכיוון שכל חודש הקרן קטנה יותר, אז ההחזר החודשי בקרן שווה דועך והופך לקטן יותר – כי סכום הכסף הנדרש לכיסוי תשלומי הריבית הולך ודועך.

הגרף הבא מתאר את התשלום החודשי הדועך כפונקציה של החודשים בהלוואה עם קרן שווה.

בהחזר הלוואה בקרן שווה ההחזר יורד ככל שהזמן חולף

שיטה שניה להחזר הקרן – החזר חודשי שווה – לוח סילוקין שפיצר

זו השיטה הנפוצה יותר (באופן מובהק) בתחום המשכנתאות. בשיטה זו ההחזר החודשי הוא קבוע. כלומר, לאורך חיי המשכנתה, מדי חודש בחודשו, נשלם בדיוק את אותו החזר כפי שקבענו עם הבנק. העניין הוא שערך הכסף דועך עם הזמן (חיזרו למאמר על האינפלציה אם אתם צריכים), ולכן 100 שקל שנשלם כיום אינם שווים ל100 שקלים שנשלם בעוד עשר שנים – ולכן נדרש פיצוי – כלומר צריך להוון את התשלום. היוון היא פעולה מימונית שמפחיתה את שווי הכסף העתידי ככל שהוא רחוק יותר בזמן מהעת הנוכחית.

הפסקאות הבאות הן טכניות, רשאים לדלג עד לקטע הבא! ההחזר החודשי להלוואה יקבע כך שאם נהוון את כל התשלומים – נקבל את סך הקרן. כלומר אנחנו צריכים למצוא את ההחזר החודשי, שנסמן אותו במשתנה x כך שסכום ההחזרים המהוונים שווה לסך ההלוואה. המשוואה שפותרים (בהתבסס על הנתונים של הדוגמה העיקרית) היא:

איך מחשבים את ההחזר החודשי בלוח סילוקין שפיצר

המשוואה הנ”ל מסובכת מאוד לפתרון (כי יש כאן ריבוי איברים והמכנה שונה בין איבר לאיבר) – קשה לפתור אותה בצורה אנליטית ויפה. מי שעסק בתחום הזה בעבר היה קונה ספרים שכבר חישבו מראש את התוצאות למשוואות הללו. מבין הספרים הללו, פורסם בוינה בשנת 1865 ספר בשפה הגרמנית על ידי המתמטיקאי היהודי סיימון שפיצר. שם הספר הוא:

Tabellen für die Zinses-Zinsen- und Renten-Rechnung mit Anwendung derselben auf die Berechnung von Anlehen, Construction von Amortisationsplänen, etc.

ובאנגלית:

Tables for compound interest and pension accounting with the same application to the calculation of loans, construction of amortization plans , etc.

הספר, על 430 עמודיו מכיל עמודים של טבלאות המאפשרות להשיג את ההחזר החודשי בהינתן משך השנים והריבית. הספר היה כל כך מקיף שהפך מיד לנפוץ ביותר. ומאז נקראת ההלוואה גם בשם הנרדף הלוואה לפי לוח סילוקין שפיצר. היום, תודה לאל, אפשר להשתמש בתוכנת אקסל כדי לחשב את ההחזר. הפונקציה PMT מחשבת את ההחזר החודשי בהלוואה לפי לוח סילוקין שפיצר.

הבדלים בין קרן שווה ללוח סילוקין שפיצר

הגענו לנושא נפיץ. האם יש יתרון בין לוח סילוקין שפיצר לבין הלוואה בקרן שווה. אני אשתמש בדוגמה המרכזית כדי לדון בסוגייה הזו.

ההחזר הראשון בהלוואה לפי לוח סילוקין שפיצר הוא 5545.98 ש”ח. זהו גם הההחזר בכל שאר החודשים. חישבתי את זה בעזרת הנוסחה הבאה באקסל:

PMT(3/1200,240,1000000).

סך תשלומי הריבית הוא: 331034 אלף שקל. חישבתי זאת בעזרת פונקצית האקסל CUMIPMT. הערה חשובה: הפונקציה הזו מתאימה לחישוב רק של הלוואות שההחזר שלהם אינו נתון לשינויים. אל תשתמשו בפונקציה הזו כדי לבנות תמהיל.

לעומת זאת, ההחזר החודשי הראשון בהלוואה בקרן שווה הוא 6666 ש”ח והחזר האחרון הוא 4177 ש”ח – כי להזיכרם ההחזר יורד ביחד עם הקרן. ההחזר הממוצע הוא 5421 שקלים בחודש. עלות הריבית וההצמדות היא 301250 שקלים.

יבחן פלוני את התוצאות ויכול בקלות להגיע למסקנה שהלוואה בקרן שווה טובה וזולה מהלוואה לפי לוח סילוקין שפיצר. אני חושב שזו מסקנה לא נכונה, ואני אייחד את הפסקה הבאה כדי להסביר לכם למה לדעתי הלוואה בלוח סילוקין שפיצר עדיפה יותר.

הלוואה בקרן שווה לא עדיפה על פני הלוואה לפי לוח סילוקין שפיצר

מאוד מפתה להעדיף הלוואה בקרן שווה. יש תחושה פסיכולוגית אמיתית של התקדמות כי בכל חודש ההחזר החודשי הולך וקטן. אבל כאן לדעתי נגמרים היתרונות וכעת יחלו החסרונות. בואו נתחיל:

לא הוגן להשוות קרן שווה אל מול קרן שפיצר

בואו נסתכל שוב על שתי ההלוואות הללו – קרן שווה מול שפיצר. לעניות דעתי, אנחנו לא מבצעים השוואה נכונה. ברור שהלוואה בקרן שווה זולה יותר, אבל אנחנו גם מחזירים בהתחלה סכום כסף שגבוה יותר בכ -20%!

מה יקרה אם נאפשר לעצמנו להגדיל את ההחזר בהלוואה בריבית שפיצר? אם למשל נגדיל ההחזר ב320 שקל לחודש (שהם 5865 שקלים בחודש) זה עדיין יותר זול מההחזר הראשוני בהלוואה בקרן שווה. רק אחרי שבע שנים וארבע חודשים ההחזר בקרן שווה יהיה נמוך יותר. כעת הפער בהחזר החודשי הממוצע עולה ל440 שקלים לטובת הלוואה בקרן שווה.

ומה היתרון? הגדלת ההחזר מאפשרת לנו לקצר את ההלוואה הזו ב 20 חודשים. אנחנו הולכים להרוויח כפול -גם ההלוואה קצרה יותר (ואז היא זולה יותר – משך השנים הוא בעל ההשפעה הגדולה ביותר על עלות ההלוואה) ובנוסף משך השנים משפיע על הריביות שמקבלים – ראו במו עיניכם בדף הריביות העדכניות. אם למשל, הריבית השנתית הנומינלית תרד ב0.1% אז כעת סך תשלומי הריבית יהיה 290458 שקלים – הצלחנו לחסוך עשרת אלפים ש”ח וגם סיימנו את ההלוואה כמעט שנתיים מוקדם יותר. שווה, לא?

אז איזו הקלה עדיף, לחסוך 10 אש”ח ולסיים כמעט שנתיים מוקדם יותר או שההחזר הממוצע, לאורך כל תקופת המשכנתה, יהיה נמוך יותר ב440 שקלים?

הלוואה בקרן שווה מייקרת את ההלוואות האחרות בתמהיל

נשנה במקצת את הדוגמה המרכזית. אנחנו עדיין זקוקים למיליון שקל, אבל הפעם – ניקח תמהיל המורכב משני שליש קל”צ ושליש פריים. התמהיל הזה נבחר לשם הפשטות והוא אינו תמהיל מומלץ. נניח כעת שיכולת ההחזר החודשית שלנו היא 5000 שקלים בחודש. את ריבית הפריים אנחנו יכולים לקחת לכמה שנים שנרצה בריבית של 1.5%.

  • בהלוואה בקרן שווה, ההחזר החודשי לחלק זה יעמוד על 4445 שקלים ולכן ישאר לנו רק 555 שקלים (שהם ההפרש מ5000 ש”ח) כדי להחזיר את החלק בתמהיל שהוקצה לריבית הפריים.
  • בהלוואה בלוח סילוקין שפיצר, ההחזר החודשי לחלק זה יעמוד על 3697 שקלים, ולכן ישארו לנו 1303 שקלים כדי להחזיר את החלק בתמהיל שהוקצה לריבית הפריים.

אני פונה כעת לחשב את ההחזר החודשי של הלוואת הפריים. אם אני לוקח את משך השנים למקסימום, דהיינו שלושים שנים, אז ההחזר החודשי יהיה 1150 ש”ח. כלומר, אם נבחר בהלוואה בקרן שווה – לא נעמוד בהחזר החודשי שהגדרנו לעצמנו. אם אנחנו לא רוצים לפרוץ את מסגרת ההחזר, אז הדרך היחידה להתכנס אל תוך ההחזר החודשי היא על ידי הארכת הלוואת הקל”צ מעבר ל20 שנה – ואז אנחנו נייקר את התמהיל פעמיים –כי הריביות עולות ככל שמשך השנים ארוך יותר וגם כי הארכת הלוואה היא בעלת ההשפעה הכי גדולה על העלות שלה.

הלוואה ארוכה יותר היא מסוכנת יותר

בהתבסס על הנאמר בקטע הקודם, קל לראות ששימוש בהלוואה בקרן שווה מחייב להאריך הלוואות אחרות בתמהיל. כזכור, למעט הלוואה קבועה לא צמודה – כל שאר ההלוואות תלויות במשתנים מאקרו – כלכליים שאין לנו שליטה עליהם – יהיו אלו למשל ריבית בנק ישראל, מדד המחירים לצרכן או תשואות אגרות החוב של ממשלת ישראל.

ככל שאנחנו מאריכים את ההלוואות, כך אנחנו מגדילים את סיכון – כלומר את ההסתברות שההחזר שלנו יעלה כתוצאה ממאורע מאקרו כלכלי שיגרום להשפעה שלילית על ההחזר.

המאמר הזה נכתב באמצע שנת 2020. בששת השנים האחרונות האינפלציה הייתה מתחת לאחד אחוז, ובחלק מהשנים, היא אפילו הייתה שלילית. אמנם האמונה ניתנה לשוטים, אבל אפשר להעריך שההסתברות שהאינפלציה בשנה הבאה תעמוד על 3% נמוכה מאוד. אבל מה יקרה עוד עשר שנים? זו תקופה רחוקה מאוד. מישהו יודע לומר מה יקרה? האם נכון לומר שההסתברות אז גם תהיה נמוכה? אני לא חושב. שינויים קטנים על פני שנה יכולים להצטבר ולהפוך לשינויים גדולים מאוד על פני עשר שנים.

זהו בדיוק המצב שמתואר בעזרת הילוך שיכור (או הילוך מקרי). אם יש לנו תהליך אקראי שאינו ידוע – ככל שהזמן עובר – סטיית התקן שלו הולכת וגדלה. ובמשכנתה המשמעות היא שהסיכון עולה.

הלוואה בקרן שווה לא מותאמת לאורך החיים שלכם

ברור למה אנחנו רוצים להפחית את תשלומי המשכנתה שלנו לאורך הזמן, אבל האם הדבר באמת מתיישב עם אורחות חיינו? הרוב המכריע של נוטלי המשכנתה נמצאים בתחילת חייהם המקצועיים והמשפחתיים. האם זה נכון להעמיס על התא המשפחתי החזרים גבוהים יותר על חשבון החזר עתידי נמוך יותר?

על פי הכלכלן היהודי פרנקו מודליאני ז”ל, זוכה פרס נובל לכלכלה (1985), התשובה היא לא. מודליאני פיתח את השערת מחזור החיים של החיסכון (1966). אחת מטענותיו של מודליאני נגעו לשיעור ההוצאות וההכנסות לאורך שנות חיינו. מודליאני טען שככל שהזמן עובר ההוצאות שלנו הולכות וגדלות. אך מנגד, בנוגע להכנסותינו, התמונה מעט יותר מורכבת. בהתחלה ההכנסות גדלות בשלב נסיקת הקריירה, אך לא לעולם חוסן ובסוף מגיעים לנקודת דעיכה מקצועית שמתורגמת גם לירידה בהכנסות.

השערת מחזור החיים של מודליאני

על פי התאור לעיל, השנים הראשונות של התא המשפחתי עמוסות בהוצאות ודלות בהכנסות – האם זה נכון להתחייב להחזר כל כך גבוה ישר על ההתחלה?

סיכום – קרן שווה או שפיצר – במה לבחור

כשהתחלתי ללמוד הנושא, ולפני שבניתי את התמהיל שלי – התלבטתי מאוד איזה שיטת החזר לבחור. זה היה לפני שהצלחתי לפתור את בעיית התמהיל– כלומר איך לבנות את התמהיל האופטימלי שיתאים לצרכים שלי וימזער את העלות לשקל. חששתי מאוד שאני אשגה אם לא אכניס הלוואה בקרן שווה – היא הרי זולה יותר!

לאחר מכן הבנתי שאני עוסק בתפל. עבור כל הלוואה בקרן שווה אפשר למצוא הלוואה לפי לוח סילוקין שפיצר שמתאימה לה. עבורי העיסוק בבחירת סוג ההחזר היא בריחה מהמשימה הקשה באמת – איך בפועל בונים את התמהיל האופטימלי. קודם צריך להבין מה השיטה והדרך לבניית התמהיל – ואחר כך אפשר לבחור באילו אבני בניין להשתמש.

בהצלחה.

אין לכם כוח לקרוא את כל זה? רוצים שאחפור לכם במקום?

אשמח לעזור!

שינוי גודל גופנים
ניגודיות